算力推动数据处理和算法演进
延伸阅读
算力推动数据处理和算法演进
算力、算法和数据是人工智能的三个基本要素,在人工智能的实际应用中缺一不可,在人工智能发展的进程中相辅相成,在不同的发展阶段各自发挥着核心作用。
算法
算法是人工智能早期研究和发展的热点,从人工智能概念提出开始,算法一直在不断地发展和演进。从供给的角度来看,学术界是人工智能理论和算法的开创者,在人工智能理论和算法的早期发展过程中起到了核心的作用,从决策树到神经网络,从机器学习到深度学习,推动算法不断演进和进步;2010年之后,TensorFlow和Caffe框架相继诞生,互联网巨头开始更多地投入对算法和算法框架的研究,并以互联网的方式和开源的精神推动了算法的发展,促进了算法与应用的结合。
进入新世纪之后,互联网的发展和普及使人类进入数字时代,数据爆炸性增长,各种类型的数据、各种格式的数据、各行各业的数据都以前所未有的速度产生并存储下来,为人工智能的发展提供了丰沃的土壤。
数据
在中国,数据主要可以划分为两类:行业数据和互联网数据。行业数据主要掌握在政府和政府主导的金融、电信、制造、医疗、能源等行业巨头和政府管理机构手中,互联网数据主要掌握在BAT等头部互联网公司手中。数据量不再是一个问题,唯一需要考虑的是如何处理和使用数据?使之更适合为人工智能系统所用;如何打破数据的壁垒,将更多的数据开放出来,并保证数据的安全和隐私保护。
中国在2017年6月1日发布并实施了《中华人民共和国网络安全法》,该法第三十七条中明确规定:“关键信息基础设施的运营者在中华人民共和国境内运营中收集和产生的个人信息和重要数据应当在境内存储。”,网络安全法等法律法规为数据的存储、管理和应用提供了法律依据。
算力
在人工智能的三个基本要素中,算力的提升直接提高了数据的数量和质量,提高了算法的效率和演进节奏,成为推动人工智能系统整体发展并快速应用的核心要素和主要驱动力。
人工智能计算具有并行计算的特征,按照工作负载的特点主要分为训练(training)和推理(inference)。传统的通用计算无法满足海量数据并行计算的要求,于是以CPU+GPU为代表的加速计算得到了快速的发展,成为当前主流的人工智能算力平台;推理类工作负载具有实时性要求高、场景化特征强、追求低功耗等特征,在不同的应用场景下呈现明显的差异化,除了GPU加速计算解决方案以外还出现了众多新的个性化算力解决方案。
算力的提升是个系统工程,不仅涉及芯片、内存、硬盘、网络等所有硬件组件,同时也要根据数据类型和应用的实际情况对计算架构、对资源的管理和分配进行优化。目前提升算力的手段也主要是两种,一种是与应用无关的,通过对架构和核心组件的创新,提升整体系统的算力水平;另一种是与应用强相关的,通过定制芯片、硬件和系统架构,为某个或某类应用场景和工作负载提供算力。
(文字/程红琳)
本报拥有此文版权,若需转载或复制,请注明来源于中国政府采购报,标注作者,并保持文章的完整性。否则,将追究法律责任。
责任编辑:LIZHENG
点击排行
欢迎订阅中国政府采购报
我国政府采购领域第一份“中”字头的专业报纸——《中国政府采购报》已于2010年5月7日正式创刊!
《中国政府采购报》由中国财经报社主办,作为财政部指定的政府采购信息发布媒体,服务政府采购改革,支持政府采购事业,推动政府采购发展是国家和时代赋予《中国政府采购报》的重大使命。
《中国政府采购报》的前身是伴随我国政府采购事业一路同行12年的《中国财经报?政府采购周刊》。《中国政府采购报》以专业的水准、丰富的资讯、及时的报道、权威的影响,与您一起把握和感受中国政府采购发展事业的脉搏与动向。
《中国政府采购报》为国际流行对开大报,精美彩色印刷;每周二、周五出版,每期8个版,全年订价276元,每月定价23元,每季定价69元。零售每份3元。可以破月、破季订阅。 可以破月、破季订阅。
欢迎订阅《中国政府采购报》!
订阅方式:邮局订阅(请到当地邮局直接订阅)